

APPLE

0

C

Introduction to the study

Apples are the fruit with the highest postharvest storage capacity

It is also the fruit that produces the highest amount of ethylene.

extending to BO

Conventional ethylene absorption systems in preservation chambers are not sufficient to absorb these high quantities of ethylene.

Effects of ethylene

- Softening and loss of firmness
- **Over ripening** and senescence
- Increased risk of blanching
- Increased risk of internal browning
- Increased incidence of rotting
- Wilt
- Weight loss

STO12 Modules / STO12 Filters

It is a **flexible solution**, the number of units will **depend on the ethylene emission** (variety, quantity, time, atmosphere).

These are self-contained, **single-use filtering units** used for **ethylene removal** when large quantities of granules are required.

They are installed in the chamber in front of the evaporator.

extending to BO

Bramley Apple

- ICA (UK) July, 2008
- Conditions: 9 months at 4.5°C and AC(1% O2, 5% CO2)
- Chamber: 380 m3 and 85 Tn of fruit

Apples preserved with **BION**, unlike SmartFresh, recover their **capacity to produce ethylene** when the C.A. is broken.

SmartFresh

BION

BION vs SmartFresh

- Better ethylene control
- 50% less rotting
- Similar hardness
- Similar internal ethylene (30 ppb)
- Better fruit quality

Royal Gala Apple

- IRTA, Costabrava (Spain), 2011
- Conditions: 4.5 months at °C and AC (1.5 1.8 % O2; 1.0 1.3 % CO2; 0.3 1.0 °C).
- Chamber: 1000 m3 and 220 Tn of fruit

Test with internal ETH machine prototype:

- Ethylene measurement
- Apple quality inspection

Ethylene concentration: < 0.2 ppm throughout storage. Commercial apple firmness: 6.1 kg (initial 7.5 kg).

BION in ULO atmospheres:

- Effectively reduced gloeosporosis.
- **Prevented** the appearance of scald.
- Ctifl/ CEFEL (France) Dr. Monteils and Dr. Westercamp, 2012. Small scale assay.
- Conditions: Apple at 0.5 1 °C, AC (2.2 % O2 and 1.5 %CO2) and ULO (1.2% O2 and 1% CO2) for 7 months.

- Ctifl/ CEFEL (France) Dr. Monteils and Dr. Westercamp, 2008.
- Conditions: 5 months at 0.5 °C, AC (2.2 % O2 and 1.5% CO2).
- Small scale trial.

BION in ULO atmosphere:

Prevented the appearance of blanching and internal

browning.

Reduced gloeosporosis.

Maintained firmness.

Slowed down **color** evolution.

Modalities	Background color of fruits	
	Cold Chamber Output	After 8h at 19ºC
Temoin	4,6 a	4,7 a
Ethylene absorption	4,4 b	4,5 b

6

BION :

- Reduced internal browning more effectively than other systems.
- Prevented the appearance of blanching and maintained firmness.
- Ctifl/ CEFEL (France) Dr. Monteils and Dr. Westercamp, 2006.
- Conditions: 5 months at 0.5 °C, AC (2 % O2 and 1.8% CO2).
- Small scale trial.

Granny Smith Apple

BION in both CA and ULO:

Reduced internal browning more effectively than other systems.

Prevented the occurrence of blanching and maintained firmness.

- Ctifl/ CEFEL (France) Dr. Monteils and Dr. Westercamp, 2012.
- Conditions: 5 months at 0.5 °C, AC (2.5 % O2 and 1% CO2) and ULO (1.2 % O2 and 0.8 % CO2).
- Small-scale study.

Granny Smith Apple

BION:

• **Prevented** the appearance of **scald** better than DPA.

- Maintained firmness.
- Ctifl/ CEFEL (France) Dr. Monteils and Dr. Westercamp, 2012.
- Conditions: 5 Fruit at 0.5 °C, AC (2 % O2 and 1.8 % CO2) for 6 and 7 months.
- Small scale trial.

Granny Smith Apple

BION clearly, reduced blanching 85% more marketable fruit than the

control group.

- Ctifl/ CEFEL (France) Dr. Monteils and Dr. Westercamp, 2005.
- Conditions: Fruit at 0.5 °C, AC (2.5 % O2 and 2% CO2).
- Blanching measurement: at the exit of the chamber and after 8 days at 19°C.
- Small scale trial.

Ariane Apple

BION:

•Reduced internal browning more effectively than other systems.

- Maintained firmness.
- Ctifl/ CEFEL (France) Dr. Monteils and Dr. Westercamp, 2012.
- Conditions: Fruit at 0.5 1 °C and AC (2.5 % O2 and 1% CO2) for 9 months.
- Small scale trial.

extending by

BION Advantages

Independent studies show that **BION**

- Maintains firmness.
- Slows down color evolution.
- Reduces gloeosporiosis.
- Reduces the **risk of blanching**.
- Reduces internal browning.

In **apple preservation:** (Bramley, Gala, Pink Lady, Granny Smith and Ariane)

Solutions for the effective removal of high ethylene concentrations

Produced during long apple storage in CA

extending shelf-life

THANK YOU

